Class – F.E. (all Branches of Engineering) Subject – Engineering Mechanics

Semester – I

Periods per week	Lecture	5	
(each of 60 minutes)	Practical	2	
	tutorial		
		Hours	marks
Evaluation System	Theory Examination	3	100
	Practical and Oral	2	25
	Examination		
	Oral Examination	(())	
	Term Work	(7)	25
	Total		150

Details of Syllabus -

Sr. No.	Topics	Hrs
01	1.1 Systems of Coplanar Forces:-	05
	Resultant of concurrent forces, parallel forces & Non concurrent Non parallel system of forces. Moment of Force about any point, Couples, Varignon's	
	Theorem. Distributed forces in plane.	
	1.2 Introduction to Centroid & Centre of Gravity, Introduction to Moment of Inertia & its theorem.	05
02	2.1 Equilibrium of system of coplanar forces :-	06
	Condition of equilibrium for concurrent forces, Parallel forces & Non concurrent Non parallel general system of forces & couples.	
	2.2Types of supports, loads, beams. Determination of reactions at supports for various types of loads on beams.	04
	2.3 Analysis of plane trusses by using Method of Section and Method of joints.	04
03	3.1 Friction :-	05
	Introduction to laws of friction, Cone of friction, Equilibrium of bodies on inclined plane. Application of problems involving wedges, ladders, screw friction.	
<	3.2 Belt friction: transmission of power by belts and ropes, centrifugal and initial tension in the belts and ropes. Condition of maximum power transmission. Flat belts and flat pulleys & ropes on grooved pulleys.	05
04	4.1 Kinematics of Particle:-	10
	Velocity and acceleration in terms of rectangular coordinate system, Rectilinear motion. Motion along plane curved path. Tangential and Normal components of acceleration. Motion Curves (a-t, v-t, s-t curves). Projectile motion. Relative motion.	
05	5.1 Kinematics of Rigid Bodies Introduction to general plane motion, Instantaneous center of rotation for the velocity, velocity diagrams for bodies in plane motion, (up to two linkage mechanism)	06

06	6.1 Kinetics of particles	06
	Introduction of basic concepts., Newton's second law, work energy principle,	
	D'Alembert's principles, equation of dynamic equilibrium.	
	6.2 Moment of Energy principles: Linear momentum, principle of	04
	conservation of momentum, Impact of solid bodies, direct and oblique	
	impact, impact of solid bodies, semi elastic impact and plastic impact.	

- 1. Question paper will be comprising of total 7 question, each of 20 marks
- 2. Only 5 questions need to be solved.
- 3. Q, 1 will be compulsory and based on entire syllabus
- 4. Remaining questions will be mixed in nature (e.g. suppose Q.2 has part (a) form, module 3 then part (b) will be form any module other then module3)
- 5. In question paper weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.

Practical and oral Examination:

Practical and oral examination will be based on one experiment performed form the list of experiment given in the syllabus and the oral will be based on the same experiment.

Term Work.

- Term work shall consist of minimum six experiments, assignments consisting numerical based on above syllabus and a written test.
- The distribution of marks for term work shall be as follows,
- Laboratory work (Experiments and Journal: 10 Marks
- Test (at least one) : 10 Marks
- Attendance (Practical and Theory) : 05 Marks
- The final certification and acceptance of term-work ensures the satisfactory performance of laboratory work and minimum passing in the term –work.

List of Experiments,

As per University syllabus	List of conducted
	Experiments.
• Polygon law of coplanar forces (concurrent)	• Beam Reactions
• Non-concurrent non-parallel(general)	• Funicular polygon
Bell crank lever	• Jib crane
• Support reaction for beam	• Friction
• Simple/ compound pendulum	Simple pendulum
 Inclined plane (to determine coefficient of 	• Fly wheel
fiction)	
Collision of elastic bodies(Law of conservation	
of momentum	
 Moment of inertia of fly wheel. 	
• Screw fiction by using screw jack	
Any other experiment based on above syllabus.	

Class – F.E. (All Branches of Engineering) Subject – Basic Electrical and Electronics Engineering

Semester – I

Periods per week	Lecture	5	
(each of 60 minutes)	Practical	2	
	tutorial		
		Hours	marks
Evaluation System	Theory Examination	3	100
	Practical and Oral	2	25
	Examination	45	
	Oral Examination		, 2)
	Term Work	(())	25
	Total		150

Sr. No.	Topics	Hrs
Prerequisite	A. Concepts of c.m.f, potential difference & current, battery.	
	B. Capacitors, with uniform & composite medium, energy	
	stored in a capacitor, R-C time constant.	
	C. Magnetic field, magnetic circuit, Faraday's laws of	
	electromagnetic induction, Hysteresis & Eddy current losses,	
	energy stored in an inductor time constant in R-L Circuit.	
1.	DC circuits: (only independent sources).	12 hours
	Ohm's law resistance, receptivity, series & parallel	
	connections, star delta transformation, power dissipation in	
	resistance, effect of temperature on resistance.	
	Kirchhoffs laws Mesh laws Mesh & Nodal analysis. Source	
	transformation, Superposition, Thevenin's. Norton's and	
	Maximum power transfer theorems.	161
2.	AC circuits:	16 hours
	Generation of alternating voltage & currents, R.M.S. &	
	Average value form factor crest factor A.C. Through	
	resistance inductance & capacitance. R-L,R-C & R-L-C	
	series & parallel circuits, phasor diagrams. Power & power	
	factor, series & parallel resonance.	
2	Problems by analytical as well as phical methods.	0.1
3.	Three phase circuits:	8 hours
	Tl	
(O)	Three phase voltage & current generation, star & delta	
	connections (balanced load), relationship b between phase &	
	line currents and voltages, phasor diagrams, measurement of	
	power by two wattmeter method.	
4.	Problems by analytical as will graphical methods. Single phase transformer:	08 hours
4.	Construction, working principle, c.m.f. equation, ideal &	Uo HOUIS
	practical transformer, phasor diagrams, equivalent circuit,	
	O.C.& S.C. tests, efficiency & regulation. All day efficiency.	
	O.C.& S.C. tests, efficiency & regulation. All day efficiency.	

5.	Electrical Machines: (No numerical is expected).	09 hours
	• DC Generators & Motors: Construction, working	
	principle, e.m.f. equation, classification & applications.	
	• Three phase Induction Motor: construction, working	
	principle, squirrel cage rotor & phase wound rotor,	
	production of rotating magnetic field, slip.	
	• Single phase Induction Motor: Construction working	
	principle, double field revolving theory, split phase,	400
	capacitor start, & shaded pole motor.	
6.	A. Semiconductor Devices: (No numerical is expected)	04 hours
	P-N Junction diode, Zener diode, their construction,	
	working and characteristics. BJT its construction,	\Diamond
	characteristics & applications. (only CE configuration)	
	B. Rectifiers: (No numerical is expected)	
	Analysis of half wave & full wave rectifier with resistive	04 hours
	load and its parameters ripple factor rectification	
	efficiency, regulation.	
	Rectifier circuit with capacitive filter only.	

- 1. Question paper will be comprising of total 7 questions, each of 20 marks.
- 2. Only 5 questions need to be solved.
- 3. Q.1. Will be compulsory and based on entire syllabus.
- 4. Remaining questions will be mixed in nature. (e.g.- suppose Q.2. has part(a) from. module 3 then part (b) will be from any module other than module 3.)
- 5. In question paper weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.
- 6. No. question should be asked from pre-requisite module.

Practical and oral Examination:

Practical and oral examination will be based on one experiment performed form the list of experiment given in the syllabus and the oral will be based on the same experiment.

Term Work.

- Term work shall consist of minimum eight experiments, and a written test. The distribution of mark shall be as follows,
- Laboratory work (Experiments and Journal: 10 Marks
- Test (at least one) : 10 Marks
- Attendance (Practical and Theory) : 05 Marks
- The final certification and acceptance of term-work ensures the satisfactory performance of laboratory work and minimum passing in the term –work.

List of laboratory experiments:

- 1. Mesh and Nodal analysis.
- 2. Verification of Superposition theorem.
- 3. Maximum Power Transfer theorem (Theremin and Norton)
- 4. Diode characteristics.
- 5. R-L-C- Series & Parallel circult.

- 6. Relationships between phase & line currents and voltages in a Three phase system (star & delta).
- 7. Power and phase measurement in three phase system by two wattmeter method.
- 8. Load test on a single phase transformer by direct loading.
- 9. O.C. & S.C. tests on single phase transformer.
- 10. Half wave & full wave rectifier (with & without filter)
- 11. Input and output characteristics of CE-BJT configuration.
- 12. Study of electrical machines.

- 1. Vincent Deltoro: Electrical Engineering Fundamentals. Pearson Education.
- 2. M.S.Naidu. S. Kamakshaiah Introduction to Electrical Bigneering, Tata McGrow Hill (Revised edition).
- 3. MITTLE & MITTAL, Basic Electrical Engg. 2/e.(New), Tata McGraw Hill
- 4. Edward Hughes: Electrical Technology. Pearson Education. (Seventh edition).
- 5. Joseph. A. Edminster: Electrical Circuits. Schaums outline series. Tata McGraw Hill
- 6. H.Cotton: Advanced E;ectroca; Technology, Wheeler Publication.
- 7. I.J. Nagrath & D.P. Kothari: Electrical machines. Tata McGraw Hill (Second edition).
- 8. Dr. P.S. Bimbhra: Electric Machinery, Khanna Publishers. (Revised edition).
- 9. William Hayt, Kemmerly, Durbin: engineering Circuit Analysis, Tata McGraw Hill (Sixth edition).
- 10. Boylestad, Nashelsky: Electronic Devices & Circuit Theory. Pearson Education.
- 11. Bhargava, Kulshreshtha, Gupta: Basic Electronics & Linear Circuits, TTTI, Chadigarh, Tata McGraw Hill
- 12. S.K. Bhattacharya S. Chatterjee: Industrial Electronics & Control. TTTI, Chadigarh, Tata McGraw Hill

Class – F.E. (All Branches of Engineering) Subject – Computer Programming-1

Semester – I

Periods per week	Lecture	3	
(each of 60 minutes)	Practical	2	
	tutorial		
		Hours	marks
Evaluation System	Theory Examination	3	100
	Practical		\
	Oral Examination	(\le	
	Term Work		25
	Total	7(0)	125

Details of the Syllabus:-

Sr. No.	Details	Hrs
01	Structured Programming using C++	05
	1.1.C++ as a superset of C programming language	
	1.2.C++ Fundamentals: Character set, identifiers and	
	Keywords, data Types, constants, and Variables Declarations,	
	Operators & Expression, Library functions, statements, Symbolic	
	Constants, Preprocessor directives	
02	2.1. Data Input and Output:	06
	getchar(), putchar() scanf(), gets() puts(), cin, cout, setw(), endi etc.	
	2.2. Control Statements:	
	If else, while, do-while, go to, for statements, nested control	
	structures, switch, break, continue statements, comma operator.	
03	3.1 Functions:	08
	Functions prototypes. passing arguments to a function by value and	
	by reference, recursion, over loading functions, storage classes	
	3.2. Arrays:	
	Defining-processing array, passing arrays to function introduction to	
	Multidimensional arrays, arrays and strings.	
04	4.1 Pointers	07
	Declaration Referencing and de-referencing, passing pointers to	
	functions pointer to functions, pointer to arrays	
	Creation and manipulation of linked list	
	4.2. Structures and Unions: Defining and processing a structure,	
05	5.1 Introduction to object Oriented Programming in C++ 5.2.	08
	Classes, Objects, data encapsulation, access specifies:	
	Private, public and protected, inheritance in details, operator	
	overloading of Unary and Binary arithmetic operators, virtual	
	functions, pure virtual functions.	
06	6.1 late binding, friend functions, Object as function parameter	06
•	overriding functions and over loaded constructors copy constructor,	
	static class members.	

Term work:

Each student is to appear for at least one written test (preferably on-line) during the term. Term work shall consist of graded answer paper of the test and at least five assignments as follows:

- 1) Five programs developed under control structures using C++.
- 2) Ten program under arrays, functions and structures using C++.
- 3) Ten debugged program listing demonstrating Object oriented constructs and concepts. Programs should be debugged (hand written & computer print- out) and should have suitable comments.

Recommended compilers turbo C++/Borland C++ or visual C++

The distribution of term work mark shall able as follows:

• Laboratory work (Experiment/ Programme and Journal) :10

• Test (at least one) : 10 Marks

• Attendance: (Practical and Theory) : 05 Marks

The final certification and acceptance of term-work ensures the satisfactory performance of laboratory work and minimum passing in the term-work.

- Programming in C++ Balagurusamy, Tata McGraw Hill
- Programming in C++ schuam out line series
- Let us C, Yaswant Kanetkar, BPB publications
- Practical C++, programming 'O' Reilly
- Algorithms with C++, 'O' Reilly.

Class – F.E. (All Branches of Engineering) Subject – Workshop practice -1

Semester – I

Periods per week	Lecture		
(each of 60 minutes)	Practical	4	
	tutorial		
		Hours	marks
Evaluation System	Theory Examination		()
	Practical		\
	Oral Examination	1/5	
	Term Work		50
	Total	10	50

University of Mumbai Class – F.E. (All Branches of Engineering) Subject – Workshop practice -I

Semester –I

Periods per week	Lecture		
(each of 60 minutes)	Practical	4	
	tutorial	1	
		Hours	marks
Evaluation System	Theory Examination		
	Practical		
	Oral Examination		
	Term Work		50
	Total		50

Detailed	Syllabus:-	Periods per week
Sr. No.	Details	Hrs
Note:	The syllabus and the Term-work to be done during Semester I	
	& Semester II are given together.	
	Jobs for practice and demonstration and spread the work over	
	entire two semesters. The objective is to impart training to	
	help the students develop skill sets for creating entities from	
	primitive engineering materials and establishing connections	
\Q	through wires and cables. This exercise also aims in	
	inculcating respect for physical work and hard labor in	
	addition to some amount of value addition by getting exposed	
	to interdisciplinary engineering domains. The two compulsory	
	trades (Sr.No1 & 2) shall be offered in separate semesters.	
	Select any four trade topics (two per semester) out of the topic	
	at Sr. n. 3 to 10. Demonstrations and hands on experience to be	
	provided during the periods allotted for the same. Report on	
	the demonstration including suitable sketches is also to be	
	included in the term-work.	

1	Fitting (Compulsory)	
•	Filling (Compulsory)	24
	Use and setting of fitting of setting of fitting tools	
	for chipping, cutting, fitting	2.4
2	Carpenter (Compulsory)	24
	Use ad setting of hand tools like hacksaws, jack planes,	
	chisels and gauges for construction of various joints, wood	6
	turning modern wood turning methods.	
	Term work to include one carpentry job involving a joint	
	and a report on demonstration of a job involving wood turning.	
3	Forging (Smithy)	12
	At least one workshop practice job (Lifting hook and handle)	(\bigcirc)
	is to be demonstrated.	^
4	Welding	12
•	Edge preparation for welding jobs. Arc welding for different) 2
	job like Lap welding of two plates, butt welding of plates with	~
	simple cover, arc welding to join plates at right angles.	10
5	Machine Shop	12
	At least one turning job is to be demonstrated.	
6	Electrical board wiring	12
	House wiring, staircase wiring for fluorescent tube light, go-	
	down wiring and three phase wiring for electrical motors.	
7	PCB Laboratory Exercises	12
	Layout drawing, Positive and negative film making PCB	
	etching and drilling, Tinning and soldering techniques.	

University of Mumbai Class – F.E. (all Branches of Engineering)

Semester – I

Subject – Applied Physics -I

Periods per week	Lecture	3	
(each of 60 minutes)	Practical	1	
	Tutorial		
		Hours	marks
Evaluation System	Theory Examination	2	75
	Practical	1	<u>-</u>
	Oral Examination		(())
	Term Work	(25
	Total	100	100

Details of Syllabus

Details	of Syllabus –	
Sr. No.	Details	Hrs
01	Crystallography & X-rays:	12
	► Lattice basis, crystal axes, unit cells, lattice parameters & crystal systems,	
	SC, BCC, FCC, diamond, Nacl, Zinc blend and HCP crystal structures, Miller	
	indices. Planes & directions, Liquid crystals & phases, LCD display & its	
	specifications.	
	➤ X-rays- origin of x-rays and x-ray spectra, x-ray diffraction & Bragg's is	
	law and determination of crystal structure.	
	► Real crystals- crystal imperfections, point defects and dislocations.	
02	Physics of Semiconductors:	08
	► Classification of solids, Fermi-Dirac statistics, concept of Fermi level & its	
	variation with temperature, impurity and applied voltage.	
	► Intrinsic & extrinsic carrier concentrations, carrier drift, mobility resistivity	
	and Hall effect, carrier diffusion, Einstein's relations, current density &	
	continuity equations.	
	► Energy band diagrams of p-n junction, formation of depletion region,	
	derivation for depletion layer width.	
03	Super conductivity:	05
	► Critical temperature, critical magnetic field, Type I Type II suppr	
	conductors, high Tc super conductors.	
	► Meissner effect, josephson effect.	
	► SQUIDS, plasma confinement, Maglev.	
04	Acoustics:	05
	▶ acoustics of Building, Absorption, Importance of Reverberation Time,	
	Units of Loudness, Decible, Phon.	
•	► Conditions for Good Acoustics methods of Designs for Good Acoustics,	
<	determination of Absorption coefficient, Noise Opllution.	
05	Ultrasonics:	05
MIL	▶ Principles of production, piezoelectric & mangetostriction effect.	
	▶ Piezoelectric & mangetostriction oscillator: ultrasonic materials- quartz &	
	ferroelectric materials, cavitations effect.	
	► Applications based on cavitation effect and echo sounding, ultrasonic	
*	imaging & medical diagnosis.	
06	Electron optics:	05
	► Electostatic & Magnetostatic focusing system	
	► Construction & working of CRT, CRO & its applications.	

- 1. Question paper will be comprising of total 7 questions, each of 15 marks.
- 2. Only 5 questions need to be solved.
- 3. Q, 1 will be compulsory and based on entire syllabus
- 4. Remaining questions will be mixed in nature (e.g. suppose Q.2 has part (a) form, module 3 then part (b) will be form any module other then module3)
- 5. In question paper weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.

Term Work.

Term work shall consist of minimum five experiments and a written test. The distribution of marks for term work shall be as follows:

• Loboratory work (Experiments and journal : 10 Marks

• Test (at least one) : 10 Marks

• Attendance (Theory and Theory)

Total

: 05 Marks
: 25 Marks

• The final certification and acceptance of term-work ensures the satisfactory performance of laboratory work and minimum passing in the term –work.

Suggested Experiments: Applied Physics1:

- 1. PF of SC, BCC. FCC, diamond and HCP (Zn) crystal structures.
- 2. Crystal lattice planes, Miller indices and interplanar spacing of (100) (110) & (111) set of planes in SC, BCC& FCC.
- 3. Hall effect & determination of Hall coefficient.
- 4. I-V characteristics of si & GaAs diodes. (IRLED)
- 5. CRO-measurement of frequency & amplitude.
- 6. CRO-Lissa Jous patterns & measurement of phase difference.
- 7. Ultrasonic distance meter.
- 8. Measurement of wavelength & velocity of ultrasonic waves.

- 1. Solid State Physics Charles Kittle, EEE Pbl
- 2. Physics of Semiconductors- S.M. Sze, wiley Easterm.
- 3. Engineering physics- Gaur & Gupta, Dhanpat Rai & Co.
- 4. A Textbook of Engineering Physics- Kshirsagar & Avadhanulu, S chand.
- 5. Modern Engineering Physics- vasudeva S Chand Pbl
- 6. Concepts of Modern Physics- Arther Beiser Tata Mcgraw Hill.

Class – F.E. (all Branches of Engineering)

Semester – I

Subject – Applied Chemistry –I

Periods per week	Lecture	3	
(each of 60 minutes)	Practical	1	_((())
	Tutorial		
		Hours	marks
Evaluation System	Theory Examination	2	75
	Practical		
	Oral Examination		
	Term Work		25
	Total		100

Details of Syllabus -

Sr. No.	Details	Hrs
01	Polymers:	10
	► Introduction, classification, Hydrocarbon Molecules, Thermoplastic,	
	Thermosetting Polymers.	
	► Basic Concepts Molecular Weight, Molecular Shape, Polymer	
	Crystallinity. Crystallization, Meting & Glass Transtition Phenomena.	
	► Viscoelasticity, Deformation Fracture, Defects in Polymers.	
	▶ Polymerization addition, Polymerization Copolymerization and	
	Condensation Polymerization.	
	► Advanced polymer Material, Conductiong Polymers Electrical Properties	
	of Polymers. Liquid Crystal Properties Molecular Electronics & Polymers &	
	Supramolecular Chemistry.	
	► Fabrication of Polymers	
	i)Compression Moulding ii) Injection Moulding iii) Transfer Moulding iv)	
	Extrusion Moulding	
	Synthesis Properties & uses of PE PMMA Formaldehyde resign Polymer	
	composite Materials.	
2	Water:	08
	► Hardness of water, effect of hard water in the manufacture sector types of	
	hardness, determination of hardness by EDTA method and Problems.	
	► Softening of water by i) Lime soda method with equations in general Hot-	
٥	cld lime soda method and problems ii)zeolite process & problems iii) Lon	
	exchange method iv) reverse osmoses, ultrafiltration & its industrial	
	application.	
	▶ Methods to determine extent of water pollution i) BOD ii) COD.	
	► Methods to control water pollution.	
	► Industrialization- materials cycle & pollution. Recycling issues.	
3	Lubricants	05
	▶ Definition, classification, characteristic properties, problems on acid value	
	and saponification value. Theories of lubrication.	
	► Additives for lubricants, selection of lubricant.	

4	Energy:	05
	► Classification Solar energy, hydropower, wind power Biomass energy	
	using bio technology Hydrogen as a fuel	
	► Solar energy, Production of electricity using solar energy Rechargeable	
	alkaline storage batteries, Nickel Hydrogen Batteries. Rechargeable Lithium	
	ion batteries	
5	Phase Rule and steels:	06
	► Gibbs Phase Rule, One Component System Water, Two Component	
	System Iron-carcon Equilibrium Diagram with Microstructures.	
	► Limitations & Application of Phase Rule.	
	▶Plain Carbon Steel.Limitations.	
	► Introduction to Alloy Steels, special steels.	
	▶ Principles of shape memory effect & its applications.	
6	Nano-materials:	06
	► Introduction to nano-materials.	
	► Graphite, fullerenes carbon nanatubes, nanowires, nanocones, Haeckelites.	
	Their electronic and mechanical properties	
	▶ Production methods for CNTS.	
	► Applications of nono materials in i) Medicine ii) Catalysis iii)	
	Environmental Technologies iv) Environmental & related fields.	
	v) Mechanics.	

- 1. Question paper will be comprising of total 7 questions, each of 15 marks.
- 2. Only 5 questions need to be solved.
- 3. Q, 1 will be compulsory and based on entire syllabus
- 4. Remaining questions will be mixed in nature (e.g. suppose Q.2 has part (a) form, module 3 then part (b) will be form any module other then module3)
- 5. In question paper weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.

Term Work.

Term work shall consist of minimum five experiments and a written test. The distribution of marks for term work shall be as follows:

Laboratory work (Experiments and journal : 10 Marks
 Test (at least one) : 10 Marks
 Attendance (Theory and Theory) : 05 Marks
 Total : 25 Marks

• The final certification and acceptance of term-work ensures the satisfactory performance of laboratory work and minimum passing in the term –work.

Suggested Experiments	Applied Physics1:
	1) To determine total, temporary and permanent hardness of water sample.
	2) Removal of hardnessusing ion exchanges column.
	3) To determine specification value of a lubricating oil.
	4) To determine acid value of a lubrication oil
	5) To determine COD of a effluent sample.
	6) To determine CO2 content from air by Orsat's apparatus.
	7) To determine flash point and fire point of a lubrication oil.
	8) To determine conductance of polymer.
	9) To determine melting point and/or glass transition temperature of a
	polymer.
	10) to prepare nono-oxide using combustion method.

- 1. Engineering Chemistry-Jain & Jain, dhanpat Rai
- 2. Engineering Chemistry-Dara & dara, S Chand
- 3. Materials Science & Engineering William Callister,
- 4. Chemistry of advanced materials- CNR Rao, RSC Pbl
- 5. Polymer Chemistry- Vasant Gowarikar
- 6. Membrane Filtration- Gutman Adam Hilger Bristol
- 7. Nano scopic materials- Emil Roduner- RSC Publishing
- 8. Nano Chemistry- Ozin et. al-RSC publishing
- 9 Physical Metallurgy- B K Agarwal

Class – F.E. (all Branches of Engineering)

Semester – I

Subject – Applied Mathematics -I

Periods per week	Lecture	4	
(each of 60 minutes)	Practical		
	Tutorial	1	
		Hours	marks
Evaluation System	Theory Examination	3	100
	Practical and Oral		-
	Examination		
	Oral Examination		-
	Term Work	- 62	25
	Total		125

Details of Syllabus -

C. NI.	D.4-2-1-1 C-11-1	I4 /\\/.
Sr. No.	Detailed Syllabus:	Lectures/We
		ek
1.1	Module 1	
	Complex numbers.	
	1.1.1 Review of complex numbers. Cartesian, Polar and	02
	Exponential form of a complex number.	
	1.1.2 De Moiver's Theorem (without proof). Powers and roots	03
	of Exponential and Trigonometric functions.	
	1.1.3 Circular and Hyperbolic functions.	
1.2	Module 2	
	Complex numbers and successive differentiation.	
	1.2.1 Inverse circular and Inverse Hyperbolic Functions	03
	Logarithmic functions	
	1.2.2 Separation of real and imaginary parts of all types of	02
	functions.	02
	1.2.3 Successive differentiation –nth derivative of standard	04
	functions- e^{ax} , $(ax=b)^{-1}$, $(ax=b)^{-m}$, $(ax=b)^{-m}$, $\log (ax+b)$	
	$\sin (ax + b) \cos (ax+b)$. $e^{ax} \sin (bx+c)$. $e^{ax} \cos (bx+c)$.	
	1.2.4 Leibnitz's theorem (without proot) and problems.	03
1.3	Module 3	03
1.5	Partial differentiation	
	1.3.1 Partial derivatives of first and higher order, total differential	
		05
	coefficients, total differentials, differentiation of composite	03
0	and implicit functions.	
	1.3.2 Euler's theorem on Homogeneous function with two and	02
Q	three independent Variables (with proof), deductions from	03
	Euler's theorem.	Total:08
1.4	Module 4	
	Application of partial differentiation, Mean Value theorems	
	1.4.1 Errors and approximations. Maxima and Minima of a	
	function of two independent variables. Lagrange's method	04
~	of undetermined multipliers with one constraint.	
	1.4.2 Rolle's theorem, Lagrange's mean value theorem,	
	Cauchy's mean value theorem (all theorems without	03
	proof). Geometrical interpretation and problems.	Total:07

1.5	Module 5		
	Vector algebra & Vector calculus		
	1.5.1 Vector triple product and product of four vectors.	01	
	1.5.2 Differentiation of a vector function of a single scalar	A	
	variable. Theorems on derivatives (without proof). curves	02	
	in space concept of a tangent vector (without problems)		
	1.5.3 Scalar point function and vector point function. Vector	06	
	differential operator del. Gradient, Divergence and curl-	11 11	
	definitions, Properties and problems. Applications-Normal,	Total:09	
	directional derivatives, Solenoidal and Irrotational fields.		
1.6	Module 6)	
	Infinite series, Expansion of functions and indeterminate forms.		
	1.6.1 Infinite series-Idea of convergence and divergence. D'	02	
	Alembert's root test, Cauchy's root test.		
	1.6.2 Taylor's theorem (Without proof) Taylor's series and		
	Maclaurin's series (without proof) Expansion of standard	04	
	series such as e ^x , sinx, cosx, tanx, sinhx, coshx, tanhx,		
	$log(1+x)$, $sin^{-1}x - tan^{-1}x$, binomial series, expansion of		
	functions in power series.		
	1.6.3 Indeterminate forms-	02	
	$\frac{0}{x}, \frac{x}{x}, 0x \infty, \infty - \infty, 0^{0}, \infty^{0}, 1^{x}$ BHospitalsrule – problem sin volving series also.		
		Total-08	
	Recommended Books:		
	• A textbook of Applied Mathematies. P.N. & J.N wartikar, volume		
	1 & 2 pune Vidyarthi Griha.		
	•Higher Engineering Mathematics Dr. B.S. Grewal, Khanna		
	Pulications.		
	•Advanced Engineering Mathematics, Erwai Kreyszing, Wiley Eastern Limited, 8 th Ed.		
	•Vector analysis- Murray R., Spiegal- Scham series		
	•Higher Engineering mathematics by B.V. Ramana-Tata McGraw		
	Hill.		

- 1. Question paper will comprise of total 7 questions, each of 20 marks.
- 2. Only 5 questions need to be solved.
- 3. Q, 1 will be compulsory and based on entire syllabus
- 4. Remaining questions will be mixed in nature (e.g. suppose Q.2 has part (a) form, module 3 then part (b) will be form any module other then module3)
- 5. In question paper weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.

Term Work.

Term work will be shall consist of minimum five experiments and a written test. The distribution of marks for term work shall be as follows:

Laboratory work (Experiments and journal
 Test (at least one)
 Attendance (Theory and Theory)
 Total
 10 Marks
 05 Marks
 25 Marks

• The final certification and acceptance of term-work ensures the satisfactory performance of laboratory work and minimum passing in the term –work.