Class – F.E. (all Branches of Engineering) Subject – Engineering Drawing

Semester - II

Periods per week	Lecture	3	
(01 Period of 60	Practical	4	
minutes)	tutorial		
		Hours	marks
Evaluation System	Theory Examination	3	75
	Practical	2	50
	Oral Examination		
	Term Work	((-//))	25
	Total		150

Details of the Syllabus -

Sr. No.	Topics	Hrs
01	Module 1	02
	• Introduction:	
	Drawing instruments. symbolic lines. letterings. dimensioning systems as per	
	I.S conventions, geometrical constructions and tangential arcs.	
02	Module 2	02
	Projections:	
	•Projection of points and lines inclined to both the reference planes including	
	HT & VT.	06
	•Projection of right regular solids (cube, prism, pyramid, cylinder and cone)	
	inclined to both HP & VP (excluding spheres, hollow and composite solids).	
	• Development of surface (excluding reverse development)	03
03	Module 3:	04
	Sections:	
	Section of solids (cube, prism, cylinder, cone) cut by plane perpendicular to	
	at- least one reference plane (excluding curved cutting planes)	
04	Module 4:	
(Orthographic projections:	04
	• Multi-view orthographic projections of simple machine parts by first angle	
	method as recommended by Indian standards.	
	• Sectional views of simple machine parts(full section and half section only)	04
	Reading of orthographic projections (missing views)	06
05	Module 5:	04
	Isometric projections:	
	Isometric projection/drawings of blocks (plain and cylindrical excluding spheres)	

06	Module 6:	
	• Engineering Curves:	03
	Parabola, Ellipse, Hyperbola, cycloid and involutes	
	Free hand sketches of fasteners	
	Thread profile – IS conventions of external and internal threads. drilled hole	
	blind hole and tapped hole	
	Bolts, Nuts, Set screws,	
	Foundations bolts and locknuts,	

Term work:

Term work shall consist of the following:

PART I: Drawing sheet

Five drawing sheets to be prepared on half imperial drawing sheet: (TO be completed in 30 Hrs.)

Sheet No.1: Curves (2 problems) & projections of lines (2 problems)

Sheet No. 2: Projections of solids (2 problems) & section of solids (1 problem)

Sheet No.3: Orthographic projections (1 problem) & sect. ortho. Projections (1 problem)

Sheet No.4: Reading of orthographic projections (2 problems)

Sheet No.5: Isometric view (2 problems) & free hand sketches of fasteners.

<u>Home</u> –Work: one sketch book, A-3 consisting of minimum 3 problems from each module. Duly signed sketch book is part of term –work.

PART II: Computer Aided Drawing (Auto -CAD)

Practice on Auto –cad: Theory and practice to be completed during practical sessions.

Sr. No.	Topic	No of Hours
1	Introduction to Auto –Cad	06
2	Fundamental of 2 –D	04
	Constructions	
3	Orthographic projections	06
4	Sectional orthographic	06
	projections	
5	Reading of Orthographic	04
	projections	
6	Fundamental of 3 –D	04
<u>*</u>	drawing Isometric view	

Printout of problems solved in the practical class to be attached in the Term work (on Sr. No. 3 4.5 & 6)

Theory Examination:

- 1. Question paper will comprise of total 7 questions, each of 15 marks.
- 2. Only 5 questions need to be solved.
- 3. Q, 1 will be compulsory.
- 4. Remaining questions will be mixed in nature (e.g. suppose Q.2 has part (a) form, module 3 then part (b) will be form any module other then module3)
- 5. No. question to be asked from Module 1

Practical Examination:

Practical examination will be based on Part II of the list Term Work (Practice on Auto -Cad)

Term Work.

- The distribution of marks for term work shall be as follows,
- Part I & Part II work (Drawing sheets, sketch book and Printouts): 10 Marks
- Test (at least one) : 10 Marks
- Attendance (Practical and Theory) : 05 Marks
- Total : 25 Marks.
- The final certification and acceptance of term-work ensures the satisfactory performance of laboratory work and minimum passing in the term –work.

- 1. Elementary Engineering drawing, N.D Bhatt, Charotar Publishing house.
- 2. Mastering auto CAD, G.Omura by Sybers (Autodesk Press), Wiley India.
- 3. Understanding AutoCAD, Sham Tiekou, Autodesk Press, Wiley India.
- 4. Machine Drawing, N.D Bhatt, Charotar Publishing house.
- 5. Engineering Drawing, M.B. Shah and B.C.Rana.
- 6. Engineering Graphics with Auto –Cad 2007 by James D.Bethune, 1st Edition, Pearson Education.

Class – F.E. (all Branches of Engineering) Subject – Applied Mathematics -II

Semester – II

Periods per week	Lecture	4	
(01 Period of 60	Practical		
minutes)	Tutorial	1	
		Hours	marks
Evaluation System	Theory Examination	3	100
	Practical and Oral	(→
	Examination	4	
	Oral Examination	T all	<u></u>
	Term Work	(())	25
	Total	(7)	125

Details of Syllabus -

Sr. No.	Detail	led Syllabus:	Hrs
	Prere	quisite: -	02
	Idea o	f curve tracing in Cartesian. Parametric and Polar forms. Standard	
	curves	s such as Straight lines. Circles, Parabolas. Hyperbola, Catenary	
	Clssoi	d, Astroid, Cycloid, Lommscate of Bernoulli, Cardiode, concept of	
	Solid	Geometry- Planes, Spheres, cones, Cylinders, Parabolloids,	
2.1		and Gamma functions, Differentiation under integral sign.	06
	2.1.1	Definition of Beta and Gamma functions and properties	
	2.1.2		
		duplication formula (with proof)	
	2.1.3	Differentiation under the integral sign with constant limits of	
		integration.	
2.2	Differ	rentiation Equations of first order and first degree	
			04
	2.2.1	Exact differential equations and those which can be reducible to the	
		exact form by using integrating factors (four rules)	
		1. Homogeneous differential equations	
		2. F(xy)ydx+g (xy)xdy=0	
	(∂M ∂N	
	$M(\mathbb{C})$	lecovie du de	
		3. LF = $e^{\int f(x)dx}$ where $f(x) = \frac{\partial y}{\partial x}$	
\Q		<i>I</i> V ∂ <i>N</i> −∂ <i>M</i>	
	Q ^D	dN-dM	
		4. I.F.+ $e^{\int g(y)dy}$ where $g(Y0 = \frac{\partial x \partial M}{M})$	
		4. I.F.+ $e^{\int_{-\infty}^{\infty}}$ where $g(Y) = \frac{1}{M}$	
		171	
		7	03
	2.2.2	Lmeat differential equations and differential equations reducible to	03
		the linear form	01
	2.2.3	Numerical solutions of differential equations using Taylor's series	01
		method.	

2.3	Numerical solutions of differential equations of first order and first	03
	degree, Differential equations of order n.	
	2.3.1 Euler's method, Modified Euler's method, Runge Kutta method of 4 th	
	order. Comparison of numerical solutions with the exact solutions.	
	2.3.2 Linear differential equations with constant coefficients-Complimentary	03
	functions, particular integrals of differential equations of the type	
	$f(D)y = X$ where X is e^{ax} sin (ax+b), cos (az+b), x^n , e^{ax} V, x^V	
2.4	Linear Differential equations with variable coefficients. Method of	
	variation of parameters and Rectification.	
	2.4.1 Cauchy's homogeneous Linear differential equation and Lavender's	02
	differential equation.	
	2.4.2 Method of variation of parameters	01
	2.4.3 Simple application of differential equations of first and second order	02
	to electrical and mechanical engineering 0roblems (no formulation of	
	differential equation)	
	2.4.4 Rectification of plane curves	02
2.5	Integral Calculus-Double Integrals	
	2.5.1 Double Integration-Definition, geometrical interpolation properties	03
	and evaluation.	
	2.5.2 Evaluation of double integrals by changing the order of integration	06
	and changing to polar form.	
2.6	Integral Calculus-Triple Integral and application of double and triple	
	integrals, computer oriented techniques.	
	2.6.1 Triple Integration- definition and evaluation (Cartesian, Cylindrical	03
	and Spherical polar coordinates), concept of Jacobeans.	
	2.6.2 Applications of double integrals to compute Volume	03
	2.6.3 Computer oriented techniques in problem soling using Scilab.	02

Theory Examination:

- 1. Question paper will comprise of total 7 questions, each of 20 marks.
- 2. Only 5 questions need to be solved.
- 3. Q, 1 will be compulsory and based on entire syllabus
- 4. Remaining questions will be mixed in nature (e.g. suppose Q.2 has part (a) form, module 3 then part (b) will be form any module other then module3)
- 5. In question paper weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.

Term Work.

Attendance (Theory and Theory) : 05 Marks
 Tutorials covering entire portion : 05 Marks
 Programming Assignments using Scilab : 05 Marks
 -Curve Tracing. Intersection of surfaces. evaluation of double and Triple Integrals. Solution of Differential equations of 1st order and 1st degree

• Test (at least one) : 05 Marks 25

• The final certification and acceptance of term-work ensures the satisfactory performance of laboratory work and minimum passing in the term –work.

- Higher Engineering Mathematics. Dr. B.S. Grewal. Khanna Publications
 Differential Equation. Ross.. wiley India. 3rd Ed.
- A textbook of Applied Mathematics, P.N. & J.N. Wartikar. volume 1 & @ . Pune vidyarthi Griha.
- Advanced Engineering Mathematics. Erwin Kreyszing. wiley India 8th Ed.
- Elementary Differential Equation, E.d. rainville. P.E & R.E Bedient. Prentice Hall, 8th edition.

Class – F.E. (all Branches of Engineering) Subject – Applied Physics -II

Semester – II

Periods per week	Lecture	3	
01 period of 60	Practical	1	
minutes	Tutorial		
		Hours	marks
Evaluation System	Theory Examination	2	75
	Practical		-
	Oral Examination	1/4/	
	Term Work	7.0	25
	Total		100

Details of Syllabus -

Sr. No. Details Hrs Module-01 Optics:	Details of	Syllabus –	
Diliterference in thin films, wedge shaped films and Newton's rings, applications of interference. Fraunhoffer diffraction through double slit and diffraction grating. grating spectra, resolving power of grating. Total internal reflection materials & types of optical fibres. numerical aperture, modes of propagation, v-number, attenuation, dispersion & other losses in fibres, applications. Module-	Sr. No.	Details	Hrs
applications of interference. ▶ Fraunhoffer diffraction through double slit and diffraction grating. grating spectra, resolving power of grating. ▶ Total internal reflection materials & types of optical fibres. numerical aperture, modes of propagation, v-number, attenuation, dispersion & other losses in fibres, applications. Module- O2 ▶ Absorption, spontaneous & stimulated emission, population inversion, metastable state, pumping schemes, active medium, resonant cavity, derivation for Einstein's coefficients. ▶ He-Ne laser, Nd:ŪAG laser, semiconductor diode laser introduction to molecular and tuneable lasers. ▶ Application of lasers to holography, Memory reading and writing & other applications. Module- O3 Foundations of Quantum mechanics: ▶ de' Broglie's hypothesis, group & phase velocity, wave packet. uncertainty principle & its applications. ▶ Wave function and probabilistic interpretation. one dimensional time dependent Schrödinger equation. reduction to time independent form. application to free particle and particle in a box. ▶ Introduction to quantum computing. Module- O4 Magnetic Materials & circuits: ▶ Atomic origin of magnetization, magnetic moment of atom diamagnetism. Langevin's theory of paramagnetism and curie's law' theory of ferromagnetism. ▶ Magnetic circuits, magnetomotive force, reluctance. permeance, Ohm's law for magnetic circuit, relation between mmf & "H", magnetic circuit due to solenoid, Hysterics. ▶ Ferrites, soft and hard magnetic materials and their applications.	Module-	Optics:	12
Fraunhoffer diffraction through double slit and diffraction grating spectra, resolving power of grating. Total internal reflection materials & types of optical fibres. numerical aperture, modes of propagation, v-number, attenuation, dispersion & other losses in fibres, applications. Module-	01	► Interference in thin films, wedge shaped films and Newton's rings,	
spectra, resolving power of grating. ▶ Total internal reflection materials & types of optical fibres. numerical aperture, modes of propagation, v-number, attenuation, dispersion & other losses in fibres, applications. Module- 02 ▶ Absorption, spontaneous & stimulated emission, population inversion, metastable state, pumping schemes, active medium, resonant cavity, derivation for Einstein's coefficients. ▶ He-Ne laser, Nd:UAG laser, semiconductor diode laser introduction to molecular and tuneable lasers. ▶ Application of lasers to holography, Memory reading and writing & other applications. Module- 03 ▶ de' Broglie's hypothesis, group & phase velocity, wave packet. uncertainty principle & its applications. ▶ Wave function and probabilistic interpretation. one dimensional time dependent Schrödinger equation. reduction to time independent form. application to free particle and particle in a box. ▶ Introduction to quantum computing. Module- 04 Magnetic Materials & circuits: ▶ Atomic origin of magnetization, magnetic moment of atom diamagnetism. Langevin's theory of paramagnetism and curie's law' theory of ferromagnetism. ▶ Magnetic circuits, magnetomotive force, reluctance, permeance, Ohm's law for magnetic circuit, relation between mmf & "H", magnetic circuit due to solenoid, Hysterics. ▶ Ferrites, soft and hard magnetic materials and their applications.			
► Total internal reflection materials & types of optical fibres. numerical aperture, modes of propagation, v-number, attenuation, dispersion & other losses in fibres, applications. Module- LASERs:		► Fraunhoffer diffraction through double slit and diffraction grating. grating	
aperture, modes of propagation, v-number, attenuation, dispersion & other losses in fibres, applications. Module- 02 Absorption, spontaneous & stimulated emission, population inversion, metastable state, pumping schemes, active medium, resonant cavity, derivation for Einstein's coefficients. ► He-Ne laser, Nd:UAG laser, semiconductor diode laser introduction to molecular and tuneable lasers. ► Application of lasers to holography, Memory reading and writing & other applications. Module- 03 Foundations of Quantum mechanics: ► de' Broglie's hypothesis, group & phase velocity, wave packet. uncertainty principle & its applications. ► Wave function and probabilistic interpretation. one dimensional time dependent Schrödinger equation. reduction to time independent form. application to free particle and particle in a box. ► Introduction to quantum computing. Module- 04 Magnetic Materials & circuits: ► Atomic origin of magnetization, magnetic moment of atom diamagnetism. Langevin's theory of paramagnetism and curie's law' theory of ferromagnetism. ► Magnetic circuits, magnetomotive force, reluctance. permeance, Ohm's law for magnetic circuit, relation between mmf & "H", magnetic circuit due to solenoid, Hysterics. ► Ferrites, soft and hard magnetic materials and their applications.			
losses in fibres, applications. 08 Module- 02		► Total internal reflection materials & types of optical fibres. numerical	
Module-02 LASERs: ▶ Absorption, spontaneous & stimulated emission, population inversion, metastable state, pumping schemes, active medium, resonant cavity, derivation for Einstein's coefficients. ▶ He-Ne laser, Nd:UAG laser, semiconductor diode laser introduction to molecular and tuneable lasers. ▶ Application of lasers to holography, Memory reading and writing & other applications. Module-03 Foundations of Quantum mechanics: ▶ de' Broglie's hypothesis, group & phase velocity, wave packet. uncertainty principle & its applications. 06 Wave function and probabilistic interpretation. one dimensional time dependent Schrödinger equation. reduction to time independent form. application to free particle and particle in a box. ▶ Introduction to quantum computing. Module-04 Magnetic Materials & circuits: ▶ Atomic origin of magnetization, magnetic moment of atom diamagnetism. Langevin's theory of paramagnetism and curie's law' theory of ferromagnetism. 06 Magnetic circuits, magnetomotive force, reluctance, permeance, Ohm's law for magnetic circuit, relation between mmf & "H", magnetic circuit due to solenoid, Hysterics. Ne Ferrites, soft and hard magnetic materials and their applications.		aperture, modes of propagation, v-number, attenuation, dispersion & other	
D2 Absorption, spontaneous & stimulated emission, population inversion, metastable state, pumping schemes, active medium, resonant cavity, derivation for Einstein's coefficients. ▶ He-Ne laser, Nd:UAG laser, semiconductor diode laser introduction to molecular and tuneable lasers. ▶ Application of lasers to holography, Memory reading and writing & other applications. Module- D3 Foundations of Quantum mechanics: ▶ de' Broglie's hypothesis, group & phase velocity, wave packet. uncertainty principle & its applications. ▶ Wave function and probabilistic interpretation. one dimensional time dependent Schrödinger equation. reduction to time independent form. application to free particle and particle in a box. ▶ Introduction to quantum computing. Module- O4 Magnetic Materials & circuits: ▶ Atomic origin of magnetization, magnetic moment of atom diamagnetism. Langevin's theory of paramagnetism and curie's law' theory of ferromagnetism. ▶ Magnetic circuits, magnetomotive force, reluctance. permeance, Ohm's law for magnetic circuit, relation between mmf & "H", magnetic circuit due to solenoid, Hysterics. ▶ Ferrites, soft and hard magnetic materials and their applications.		losses in fibres, applications.	
metastable state, pumping schemes, active medium, resonant cavity, derivation for Einstein's coefficients. ▶ He-Ne laser, Nd:UAG laser, semiconductor diode laser introduction to molecular and tuneable lasers. ▶ Application of lasers to holography, Memory reading and writing & other applications. Module- 103 Module- 103 Module- 104 Maynetic Materials & circuits: ▶ Atomic origin of magnetization, magnetic moment of atom diamagnetism. Langevin's theory of paramagnetism and curie's law' theory of ferromagnetism. ▶ Magnetic circuits, magnetomotive force, reluctance. permeance, Ohm's law for magnetic circuit, relation between mmf & "H", magnetic circuit due to solenoid, Hysterics. ▶ Ferrites, soft and hard magnetic materials and their applications.	Module-	LASERs:	08
derivation for Einstein's coefficients. ► He-Ne laser, Nd:UAG laser, semiconductor diode laser introduction to molecular and tuneable lasers. ► Application of lasers to holography, Memory reading and writing & other applications. Module- 03 Foundations of Quantum mechanics: ► de' Broglie's hypothesis, group & phase velocity, wave packet. uncertainty principle & its applications. ► Wave function and probabilistic interpretation. one dimensional time dependent Schrödinger equation. reduction to time independent form. application to free particle and particle in a box. ► Introduction to quantum computing. Module- 04 Magnetic Materials & circuits: ► Atomic origin of magnetization, magnetic moment of atom diamagnetism. Langevin's theory of paramagnetism and curie's law' theory of ferromagnetism. ► Magnetic circuits, magnetomotive force, reluctance. permeance, Ohm's law for magnetic circuit, relation between mmf & "H", magnetic circuit due to solenoid, Hysterics. ► Ferrites, soft and hard magnetic materials and their applications.	02	► Absorption, spontaneous & stimulated emission, population inversion,	
 ▶ He-Ne laser, Nd:UAG laser, semiconductor diode laser introduction to molecular and tuneable lasers. ▶ Application of lasers to holography, Memory reading and writing & other applications. Module- O3 Foundations of Quantum mechanics: ▶ de' Broglie's hypothesis, group & phase velocity, wave packet. uncertainty principle & its applications. ▶ Wave function and probabilistic interpretation. one dimensional time dependent Schrödinger equation. reduction to time independent form. application to free particle and particle in a box. ▶ Introduction to quantum computing. Module- O4 Magnetic Materials & circuits: ▶ Atomic origin of magnetization, magnetic moment of atom diamagnetism. Langevin's theory of paramagnetism and curie's law' theory of ferromagnetism. ▶ Magnetic circuits, magnetomotive force, reluctance. permeance, Ohm's law for magnetic circuit, relation between mmf & "H", magnetic circuit due to solenoid, Hysterics. ▶ Ferrites, soft and hard magnetic materials and their applications. 		metastable state, pumping schemes, active medium, resonant cavity,	
molecular and tuneable lasers. Application of lasers to holography, Memory reading and writing & other applications. Module- 03 Foundations of Quantum mechanics: b de' Broglie's hypothesis, group & phase velocity, wave packet. uncertainty principle & its applications. Wave function and probabilistic interpretation. one dimensional time dependent Schrödinger equation. reduction to time independent form. application to free particle and particle in a box. Introduction to quantum computing. Module- 04 Magnetic Materials & circuits: Atomic origin of magnetization, magnetic moment of atom diamagnetism. Langevin's theory of paramagnetism and curie's law' theory of ferromagnetism. Magnetic circuits, magnetomotive force, reluctance. permeance, Ohm's law for magnetic circuit, relation between mmf & "H", magnetic circuit due to solenoid, Hysterics. Ferrites, soft and hard magnetic materials and their applications.		derivation for Einstein's coefficients.	
 Application of lasers to holography, Memory reading and writing & other applications. Module- 03 Foundations of Quantum mechanics: b de' Broglie's hypothesis, group & phase velocity, wave packet. uncertainty principle & its applications. Wave function and probabilistic interpretation. one dimensional time dependent Schrödinger equation. reduction to time independent form. application to free particle and particle in a box. Introduction to quantum computing. Module- 04 Magnetic Materials & circuits: Atomic origin of magnetization, magnetic moment of atom diamagnetism.		► He-Ne laser, Nd:UAG laser, semiconductor diode laser introduction to	
applications. Module- 03		molecular and tuneable lasers.	
Module- 03		► Application of lasers to holography, Memory reading and writing & other	
 Description of the de' Broglie's hypothesis, group & phase velocity, wave packet. uncertainty principle & its applications. ► Wave function and probabilistic interpretation. one dimensional time dependent Schrödinger equation. reduction to time independent form. application to free particle and particle in a box. ► Introduction to quantum computing. Module- Magnetic Materials & circuits: ► Atomic origin of magnetization, magnetic moment of atom diamagnetism. Langevin's theory of paramagnetism and curie's law' theory of ferromagnetism. ► Magnetic circuits, magnetomotive force, reluctance. permeance, Ohm's law for magnetic circuit, relation between mmf & "H", magnetic circuit due to solenoid, Hysterics. ► Ferrites, soft and hard magnetic materials and their applications. 		applications.	
uncertainty principle & its applications. ► Wave function and probabilistic interpretation. one dimensional time dependent Schrödinger equation. reduction to time independent form. application to free particle and particle in a box. ► Introduction to quantum computing. Module- Magnetic Materials & circuits: ► Atomic origin of magnetization, magnetic moment of atom diamagnetism. Langevin's theory of paramagnetism and curie's law' theory of ferromagnetism. ► Magnetic circuits, magnetomotive force, reluctance. permeance, Ohm's law for magnetic circuit, relation between mmf & "H", magnetic circuit due to solenoid, Hysterics. ► Ferrites, soft and hard magnetic materials and their applications.	Module-	Foundations of Quantum mechanics:	
 Wave function and probabilistic interpretation. one dimensional time dependent Schrödinger equation. reduction to time independent form. application to free particle and particle in a box. Introduction to quantum computing. Magnetic Materials & circuits: Atomic origin of magnetization, magnetic moment of atom diamagnetism. Langevin's theory of paramagnetism and curie's law' theory of ferromagnetism. Magnetic circuits, magnetomotive force, reluctance. permeance, Ohm's law for magnetic circuit, relation between mmf & "H", magnetic circuit due to solenoid, Hysterics. Ferrites, soft and hard magnetic materials and their applications. 	03	▶ de' Broglie's hypothesis, group & phase velocity, wave packet.	06
dependent Schrödinger equation. reduction to time independent form. application to free particle and particle in a box. Introduction to quantum computing. Module- 04 Magnetic Materials & circuits: Atomic origin of magnetization, magnetic moment of atom diamagnetism. Langevin's theory of paramagnetism and curie's law' theory of ferromagnetism. Magnetic circuits, magnetomotive force, reluctance. permeance, Ohm's law for magnetic circuit, relation between mmf & "H", magnetic circuit due to solenoid, Hysterics. Ferrites, soft and hard magnetic materials and their applications.		uncertainty principle & its applications.	
application to free particle and particle in a box. Introduction to quantum computing. Magnetic Materials & circuits: Atomic origin of magnetization, magnetic moment of atom diamagnetism. Langevin's theory of paramagnetism and curie's law' theory of ferromagnetism. Magnetic circuits, magnetomotive force, reluctance. permeance, Ohm's law for magnetic circuit, relation between mmf & "H", magnetic circuit due to solenoid, Hysterics. Ferrites, soft and hard magnetic materials and their applications.			
 ▶ Introduction to quantum computing. Module- 04			
Module- 04			
 Atomic origin of magnetization, magnetic moment of atom diamagnetism. Langevin's theory of paramagnetism and curie's law' theory of ferromagnetism. ▶ Magnetic circuits, magnetomotive force, reluctance. permeance, Ohm's law for magnetic circuit, relation between mmf & "H", magnetic circuit due to solenoid, Hysterics. ▶ Ferrites, soft and hard magnetic materials and their applications. 	\Diamond	▶ Introduction to quantum computing.	
Langevin's theory of paramagnetism and curie's law' theory of ferromagnetism. ► Magnetic circuits, magnetomotive force, reluctance. permeance, Ohm's law for magnetic circuit, relation between mmf & "H", magnetic circuit due to solenoid, Hysterics. ► Ferrites, soft and hard magnetic materials and their applications.	Module-	Magnetic Materials & circuits:	
ferromagnetism. Magnetic circuits, magnetomotive force, reluctance. permeance, Ohm's law for magnetic circuit, relation between mmf & "H", magnetic circuit due to solenoid, Hysterics. Ferrites, soft and hard magnetic materials and their applications.	04	► Atomic origin of magnetization, magnetic moment of atom diamagnetism.	06
 ▶ Magnetic circuits, magnetomotive force, reluctance. permeance, Ohm's law for magnetic circuit, relation between mmf & "H", magnetic circuit due to solenoid, Hysterics. ▶ Ferrites, soft and hard magnetic materials and their applications. 		Langevin's theory of paramagnetism and curie's law' theory of	
law for magnetic circuit, relation between mmf & "H", magnetic circuit due to solenoid, Hysterics. ▶ Ferrites, soft and hard magnetic materials and their applications.			
to solenoid, Hysterics. ▶ Ferrites, soft and hard magnetic materials and their applications.			
► Ferrites, soft and hard magnetic materials and their applications.			
Module- Bio- Physics.			
	Module-	Bio- Physics.	

05	► Introduction and scope molecular modeling, energy transfer & energy	04
	cycles, biomechanics, neurobiophysics.	
	► Tools spectroscopy- UV/Visible. IR, use of NMR microscopy- SEM,	
Module-	Vacuum technology:	
06	▶ Basic definitions, units, low, high and ultrahigh vacuum, methods of	04
	production	
	► Vacuum pumps- rotary, diffusion. vacuum gauges piram penning	7
	thermocouple	
	► Application to thin films. , microelectronics. Nanotechnology. plasma	
	physics	

Theory Examination:

- 1. Question paper will comprise of total 7 questions, each of 15 marks.
- 2. Only 5 questions need to be solved.
- 3. Q, 1 will be compulsory and based on entire syllabus
- 4. Remaining questions will be mixed in nature (e.g. suppose Q.2 has part (a) form, module 3 then part (b) will be form any module other then module3)

 In question paper weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.

Term Work.

Term work shall consist of minimum five experiments and a written test. The distribution of marks for term work shall be as follows:

Loboratory work (Experiments and journal : 10 Marks
Test (at least one) : 10 Marks
Attendance (Theory and Theory) : 05 Marks
Total : 25 Marks

• The final certification and acceptance of term-work ensures the satisfactory performance of laboratory work and minimum passing in the term –work.

- 1. Fundamentals of Physics, Holliday/ Resnick white India 6th edi.
- 2. Fundamentals of optics, Jenkins & white Me Graw-Hill Int.
- 3. Understanding Physics, Cummins, wiley India
- 4. Modem Engineering physics A S Vasudeva S shand

Class – F.E. (all Branches of Engineering) Subject – Applied Chemistry -II

Semester – II

Periods per week	Lecture	3	
01 period of 60	Practical	1	
minutes	Tutorial		
		Hours	marks
Evaluation System	Theory Examination	2	75
	Practical	1/4	
	Oral Examination	<u> </u>	<u></u>
	Term Work	(())	25
	Total		100

Details of Syllabus -

	Synabus –	
Sr. No.	Details	Hrs
Module-	Corrosion:	8
01	• Nemst theory, Standard Electrode potential, types of corrosion Dry or	
	chemical corrosion wet or electrochemical corrosion Electrochemical,	
	Galvanic cell, Concentration cell, Intergranular Stress cell corrosion	
	Polarization, Over voltage. Factors affecting rate of corrosion.	
	• Methods to decrease the rate of corrosion, cathodic and anodic Protection,	
	cathodic and Anodic coatings, advanced coatings and protection methods,	
	Only constituents and their function of a) Panints b) Varnishes c) Lacquors d)	
	Enamels.	
	• Metallic coatings: Methods of coating and study only electroplating	
	method. Corrosion engineering of electronic and photonic devices.	
Module-	Alloys:	06
02	• Alloys, Types of alloys, alloys of Al, Cu & Pb. Their composition	
	properties and uses. Recent advances in alloy related materials	
	• Powder Metallurgy Methods of metal powder formation, Metal ceramic	
	powders Technology of Powder metallurgy. Applications of powder	
	metallurgy.	
Module-	Fuel	
03	• definition classification, characteristic properties of a good fuel Calorific	10
(value, cross and Net calorific value, conversion. Proximate and altimate	
	analysis of fuels, combustion calculations for requirement of oxygen and air	
Q	for given solid, liquid gaseous fuel.	
	Liquid fuels: Crude petroleum oil, classification Separation and purification	
	of Gasoline from crude oil. Thermal cracking Catalytic cracking. Fixed bed,	
	moving method for obtaining gasoline.	
	• Diesel, Bio diesel, methods to obtain bio diesel, production of ethanol using	
	bio-mass production of hydrocarbons from plants, Knocking, Octane value.	
•	antiknocking agents and their function recent technology for catalytic	
	converter.	

Module-	Composite Materials:	05
04	• Introduction. Constitution, Characteristic properties classification Particle,	
	fiber, reinforced composites structural composites,	
	Application of composite materials	
Module-	Green chemistry:	05
06	• Introduction, Goals Significance, Basic ideas in the field of green chemistry	P
	research with 3 examples.	
	Industrial applications of green chemistry.	
Module-	Catalysis:	06
07	• Introduction, Importance of catalysts and adsorbents in industry, Activation	
	energy and catalysts.	
	Molecular design for catalysts and adsorbents, Molecular design by nature-	
	Zeolites, zeotypes, pillared clays, Metal complexes and clusters, Oxide	
	materials carbon materials, membranes.	

Theory Examination:

- 1. Question paper will comprise of total 7 questions, each of 15 marks.
- 2. Only 5 questions need to be solved.
- 3. Q, 1 will be compulsory and based on entire syllabus
- 4. Remaining questions will be mixed in nature (e.g. suppose Q.2 has part (a) form, module 3 then part (b) will be form any module other then module3)

 In question paper weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.

Term Work.

Term work shall consist of minimum five experiments and a written test. The distribution of marks for term work shall be as follows:

Loboratory work (Experiments and journal : 10 Marks
Test (at least one) : 10 Marks
Attendance (Theory and Theory) : 05 Marks
Total : 25 Marks

• The final certification and acceptance of term-work ensures the satisfactory performance of laboratory work and minimum passing in the term –work.

- 1. Fundamentals of Physics, Holliday/ Resnick white India 6th edi.
- 2. Fundamentals of optics, Jenkins & white Me Graw-Hill Int.
- 3. Understanding Physics, Cummins, wiley India
- 4. Modem Engineering physics A S Vasudeva S shand

Class – F.E. (All Branches of Engineering) Subject – Communication Skill - II

Semester – II

Periods per week	Lecture	2	
01 period of 60	Practical		
minutes	Tutorial	2	
		Hours	marks
Evaluation System	Theory Examination	2	75
	Practical		¢ (
	Oral Examination	- 1/8/	25
	Term Work		25
	Total	(0)	125

Details of the Syllabus -

Sr. No.	Details	Hrs
Module-	Communication Theory	08
01	• Concept and meaning of communication, Objectives of communication.	
	Methods of communication, Communication in a business organization	
	(Internal, upward, downward horizontal, grapevine), Problems and solutions.	
Module-	Techniques to improve communication	05
02	• Speaking (Phonetics), Writing, Reading and Listening. Introduction to Modern Communication Media, Netiquette, conferencing-Introduction, Importance, Techniques.	
Module-	Summarization and Comprehension.	03
03	• Techniques to comprehend and summarize a given technical, scientific or	
	industry oriented text, Questions to test analytical skills and expressions. (to	
	test the ability to present the written matter in a brief and concise manner)	
Module- 04	Vocabulary. Grammar & Aptitude test.	03
Module-	Basic Official Correspondence.	08
05	• Principles of correspondence, Language and style in official letters. formats	
	of letters (Complete block, Modified Block, semi-Block form), Types of	
	letters (Enquiry, Reply to enquiry, Placing an order, claim and Adjustments).	
Module-	Basic Technical Writing.	03
06	• framing definitions, Writing instructions, Types of expositions (description and explanation).	

Theory Examination:

- 1. Question paper will comprise of total 7 questions, each of 15 marks.
- 2. Only 5 questions need to be solved.
- 3. Q, 1 will be compulsory and based on entire syllabus
- 4. Remaining questions will be mixed in nature (e.g. suppose Q.2 has part (a) form, module 3 then part (b) will be form any module other then module3)

 In question paper weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.

Tutorials:

Topics to be assigned for speech practice to test diction. Modulation, fluency and non verbal communication

Practice for group discussion

Writing Assignments.

Term Work. 25 Marks

Each student to appear for at least one test during the term.

Term work shall consist of graded answer paper of the test and at least 06 hand assignments (I assignment per module).

Written test

: 10 Marks

Assignments

: 10 Marks

Attendance

05 Marks

Oral Communication

(Only Internal Assessment for oral examination): 25 Marks

10 marks for public speaking

15 marks for group Discussion.

- 1. Business communication, Lesikar and Petit: Mc Graw-Hill Publications. 1995
- 2. Communication Skills Handbood, summers, Wiley India.
- 3. Business Communication, (Revised Edition), Rai And Rai, Himalaya Publishing House
- 4. Business correspondence and report writing, R.C. Sharma and Krishna Mohan, tata McGraw-Hill, 2002 3rd edition.
- 5. English for Engineers and Technologists: A skills approach (Books 1 & 2) course authors (Humanities& social Sciences division, Anna University Madras) Orient Longman.
- 6. Modern Business Correspondence, Mc-commas and Satterwhite; Sixth Edition. McGraw-Hill publications.
- 7. Technical Writing and Professional communications, Huckins, Thomas, McGraw-Hill
- 8. Contemporary Business communication, Scott Ober, Wiley India.
- 9. Written Communication, Sarah, Orient Longman.

Class – F.E. (All Branches of Engineering) Subject –Computer Programming - II

Semester – II

Periods per week	Lecture	4	
01 period of 60	Practical	2	
minutes	Tutorial		
		Hours	marks
Evaluation System	Theory Examination	3	100
	Practical & Oral	3	25
	Examination	48	
	Oral Examination	= = = = = = = = = = = = = = = = = = = =	<u></u>
	Term Work	(0)	25
	Total	(7)	150

Details of the Syllabus -

Details of	the Syllabus –	
Sr. No.	Detailed Syllabus: CP –II (Object Oriented Programming in JAVA)	Hrs
Module-	Introduction to Java	05
01	• Characterizing Java as a enabler of contemporary software engineering	
	paradigms- as a platform, simple Programming Environment, Object-	
	Oriented, Platform Independent, Safe. High Performance, Java is Multi-	
	Threaded, dynamically linked, Java is Garbage Collected	
	 Saving files on Windows, compiling and Running 	
	• Increment and decrement operators	
	• Print statements, variables and Data Types, Comments	
	Command line arguments	
	Objects, Static Fields, Methods	
	• Passing Arguments to Methods; Returning values from methods.	
Module-	Primitive Data Types in Java	15
02	• Java Operators, Literals, Identifiers. key words in Java	
	• Addition of Integers in Java, Multiplication and division in Java	
	• The Remainder or Modulus Operator in Java	
	 Operator Precedence in Java, Mixing Data Types 	
	 Converting Strings to Numbers, The char data type in Java 	
	• The if, else, else-if statement in Java	
	• The While loop, The for loop, The do while loop in Java	
	Booleans, Relational Operators, relational Operator Precedence	
^	Break, Continue, The switch statement in Java	
	• The?: operator in Java, Logical Operators in Java	
W(O)		
	Object Oriented Programming	
	• Constructing objects with new, Methods, Invoking Methods	
	• Implied this, Member Variables vs. Local Variables	
	 Passing Arguments to Methods, Returning Multiple Values From Methods, constructors 	
	• Access Protection, The four Levels of Access Protection	
L	,	1

Module-	Arrays a Data Structure in JAVA	10
03	• Declaring Arrays, Creating Arrays, Initializing Arrays	
	• System array copy ()	
	•Multi-dimensional arrays	
	• Strings	
	•Vectors	
	•Exceptions	
	• Try –catich	
	•The finally keyword	
	Catching multiple exception	
	• The throws keyword. Throwing exceptions	
Module-	Inheritance	05
04	• Inheritance : the superclass	
	Multilevel Inheritance	
	• final and abstract keyword	
	•Interfaces	
	•Implementing Interfaces	
	•Overriding Methods	
	•Adding Methods	
	Subclasses and Polymorphism	
	• To String () Methods	
	• Using to siring() Methods	
	•Rules for to String() Method	
	• Static Members	
Module-	Multithreaded programming	10
05	• Creating threads. extending the thread class	
	Stopping and blocking a thread	
	• Lifecycle of a thread	
	• Using thread methods, thread exceptions. thread priority	
	• Synchronization	
	• The Java Packages & Class Library	
	Wrapping Your Own Packages	
	•Naming Packages	
	•Documentation for the class library	
	• Importing classes	
	•Package Imports	
	Name conflicts when importing packages	
	•The java lang package	
	• The lang Math, java util vector, java lang String,	
	Java util Random, java util Hashtable java util date java util calendar.	
Module-	HTML	05
06	Attributes , URLs, Links	
	•Applet	
	• The APPLET Element, Naming Applets	
	•JAR Archives, The OBJECT Element	
	• Passing Parameters to Applets	
₹	• the Basic Applet Life Cycle, init(), start(), stop(), and destroy()	
	• The coordinate system, Graphic Objects. Loading Images	
	•Code and Document Bases, Drawing Images at Actual Size	
	• Scaling Images, Coior, fonts.	

Term Work.

The work shall consist of graded answer paper of the test and at least five take – home assignments. 15 marks debugged program listing demonstrating Object oriented constructs and concepts. Programs should be debugged (hand written or computer printouts) and should have suitable comments.

Each student is to appear for at least one written test (preferably o-line) during the term. The distribution of term work mark shall able as follows:

Written test (at least one) : 10 Marks
 Attendance: (Practical and Theory) : 05 Marks
 Documentation of assignments and Debugged program (Laboratory work) : 10 Marks

Recommended Books: Text books

- 1 Computing concepts with java 2 essentials by CAY HORSTMANN 2 Edition WILEY INDIA ISBN 81-265-0931-9
- 2. Programming with JAVA Primer, E Balagurusamy 3rd Edition, Tata McGRAW –Hill, ISBN 0-07-061713-9

Reference books:

1 Big java by CAY HORSTMANN, 2 Edition, WILEY INDIA ISBN 81-265-0879-5

2 The Complete reference JAVA , Herbert schildt, Seventh Edition , Tata McGRAW –Hill, ISBN 0-07-063677-X.